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ABSTRACT
Identifying mangosteen maturity stages pre-harvest is crucial for postharvest quality, as fruit disease 
and pest infestation often occur at specific stages. Deep learning, while popular for classification, 
struggles with false negatives. Conversely, conventional machine learning methods now effectively 
handle false negative issues. The main goal of this research is to determine the significant comparison 
between different conventional classifiers, namely Random Forest (RF), Decision Tree (DT), Support 
Vector Machine (SVM) and K-Nearest Neighbour (K-NN), in terms of their accuracy, validity, and 
False Negative Rate (FNR) in predicting six distinct classes. Image samples of 253 mangosteens 
across six maturity stages were used, with 20 regions of interest (ROIs) each. 112 Gray-level 
Co-Occurrence Matrix (GLCM) and colour features were extracted to train models using texture, 
colour, and combined features. The evaluation metrics used for assessing the validity of predictions 

included precision, recall, F1-score, accuracy, 
and Cohen’s Kappa. The RF classifier achieved 
high validation scores, with an accuracy of 
0.76 and Cohen’s Kappa of 0.70 for combined 
features, 0.75 and 0.69 for coloured features, and 
0.46 and 0.33 for texture features. The Friedman 
test on false positive rates (FNR) across the four 
models shows significant differences (p < 0.05) 
for colour, texture, and their combination, with 
p-values of 0.00134, 0.00572, and 0.00071, 
respectively. RF is the best method, with the 
lowest mean FNR scores: 1.16 for texture, 1.16 
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for colour, and 1.00 for combined features. In conclusion, the RF classifier outperforms other 
classifiers in accuracy, validity, and mean FNR across six classes with three category features, 
achieving statistical significance in the Friedman Test.

Keywords: Conventional machine learners, decision tree, fruit maturity, K-Nearest Neighbour, random forest, 
support vector machine 

INTRODUCTION

Mangosteen, technically known as Garcinia mangostana, is a tropical fruit native to 
Southeast Asia, notably Malaysia, Indonesia, and Thailand. Mangosteen is grown 
extensively in Malaysia’s Pahang, Johor, and Perak states. Malaysia is a significant supplier 
of mangosteen worldwide, and the demand for this tropical fruit is growing, particularly 
in the United States, Europe, Japan, the Arab region, and ASEAN countries. Mangosteen 
is one of the nine premium fruits targeted by the Malaysian government, and mangosteen 
exports have increased by 65% since 2020 (IndexBox, 2024). The conventional method of 
assessing and identifying fruit quality through manual inspection by trained professionals 
is time-consuming and impractical for efficiently categorising large volumes of fruits 
intended for export within a limited time frame. To optimise the efficiency of fruit sorting 
and elevate the quality of categorisation and filtering, leveraging image processing and 
machine learning (ML) algorithms proves advantageous, as highlighted in studies by 
Pandey et al. (2013) and Liakos et al. (2018).

Recent trends employ deep learning (DL) in many aspects, including prediction and 
classification research areas, including crop grading, maturity or ripeness classification, and 
crop-yielding prediction (Khan, Nauman et al., 2022, Khan, Faheem et al., 2022; Joshua 
et al., 2022; Bashir et al., 2023; Orchi et al., 2023). Other studies which utilised DL in 
classifying leaf disease by Parashar and Johri (2024) and fruit maturity and defective fruits 
are by Al-Mashhadani and Chandrasekaran (2021), Mohtar et al. (2019), Kim et al. (2023), 
Ashtiani et al. (2021), Benmouna et al. (2022), Gao et al. (2020), Tan et al. (2020), Muñoz 
et al. (2022), Azizah et al. (2017) and Sudana et al. (2020). Nevertheless, according to 
Rushing (2022), the No Free Lunch (NFL) theorem claims that no particular ML algorithm 
is always the most effective for a given situation. Regardless of the contrasting notion 
among researchers, this work tends to agree that research utilising traditional machine 
learners should be continued so that improved techniques can be discovered in conventional 
machine learners to be, at the minimum, on par with deep learners’ performance. Orchi et 
al. (2023) revealed that, despite the superior performance of the InceptionV3 network in 
terms of accuracy, precision, and recall, the Random Forest (RF) classifier demonstrated a 
markedly lower False Negative (FN) rate compared to other experimented models. Their 
findings are crucial for achieving heightened accuracy and mitigating misclassification rates. 
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In combining texture and coloured features, Phothisonothai and Tantisatirapong (2019) 
achieved 88% accuracy for mangosteen maturity stages within 3 classes. Whidhiasih et 
al. (2012) reached 85% accuracy across 6 maturity stages. Riyadi et al. (2020) achieved 
94.16% accuracy, focusing on skin defects, not maturity stages. In addition, Parashar and 
Johri (2024) resulted in 94.76% accuracy in determining 4 classes of apple leaf disease. 
Several studies advocate for the incorporation of coloured features in fruit grading, as 
proposed by Khojastehnazhand et al. (2010) and Liming and Yanchao (2010). Damarjati 
et al. (2017) aced 80.8% accuracy using statistical features from mangosteen, but it 
focused on skin defects. Indeed, Afandi et al. (2021) scored 96.67% accuracy using texture 
features extracted via the Gray-level Co-Occurrence Matrix (GLCM) and executed using 
Extreme Learning Machines (ELM) for mangosteen. Nevertheless, the work detects skin 
defects. Another study by Riyadi et al. (2018) attained an accuracy of 92.5% utilising 
Discrete Cosine Transform (DCT) extracted texture features. However, the work detected 
mangosteen binary classes for skin defects unrelated to the fruit’s maturity stages.

In a different category where numerical data were used, Khan, Faheem et al. (2022) 
achieved an accuracy of 96% and Joshua et al. (2022) with 97%, respectively. Khan, 
Nauman et al. (2022) and Bashir et al. (2023) gained accuracy of 78% and 91.44%, 
respectively, also using numerical data. These studies attempted to match the shape of the 
standard irrigation model.

The primary goal of this research is to compare the significance of various conventional 
classifiers, namely RF, DT, SVM and kNN, in terms of their accuracy and validity across 
various metrics such as accuracy, precision, recall, F1-score, and Cohen’s Kappa when 
predicting six distinct classes. Next, this study aimed to analyse the processing power 
of the traditional machine learning models in relation to the false negative rate. In this 
area, deep learning models may fall short. This work attempts to understand the inherent 
strengths and limitations intrinsic to the classification methods implemented throughout 
this study, thus contributing to the advancement of knowledge not only of mangosteen 
maturity classification but also of other agricultural studies. 

MANGOSTEEN CHARACTERISTICS

Mangosteen maturity is defined by various parameters such as size, colour, texture, and 
flavour, traversing through six discernible phases, each with unique characteristics. The 
first phase, Index Class 1, is marked by an immature yellowish-green colour, small size, 
and high mucus content. In Index Class 2, the fruit is half-developed green, continuing to 
mature with reduced mucus. Moving on to Index Class 3, the fruit’s colour transitions to 
mature red-brownish, and the flesh becomes separable. Index Class 4 signifies ripeness, 
with the fruit maturing into red-purple hues, and the flesh is ready for consumption. Fully 
ripe in Index Class 5, the reddish mangosteen offers the finest flavour for immediate 
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consumption. Finally, Index Class 6 indicates an overripe state, characterised by a purple-
black colour, with mushy flesh. A visual representation of this multiclass progression 
of mangosteen maturity stages is depicted in Figure 1, as documented by Acharya et al. 
(2018) and Thammastitkul and Klayjumlang (2021), providing valuable insights into the 
intricacies of mangosteen development.

development. 

 

Figure 1. Mangosteen Maturity (a) Index Class 1; (b) Index Class 2; (c) Index Class 3; (d) Index Class 4; (e) 
Index Class 5; (f) Index Class 6 

Figure 1. Mangosteen Maturity (a) Index Class 1; (b) Index Class 2; (c) Index Class 3; (d) Index Class 4; 
(e) Index Class 5; (f) Index Class 6

MACHINE LEARNING TECHNIQUES

The K-NN method, a supervised learning technique, evaluates new datasets by measuring 
their proximity to the k-nearest data points within the training set. It involves storing the 
training data and calculating the distance between each new and existing data point. Then, 
the K-NN algorithm identifies the k closest data points and assigns the new data point to 
the class containing most of these k nearest neighbours. Widely used for classification 
and regression tasks (Riyadi et al., 2020; Kim et al., 2023), the algorithm determines the 
projected label for a test sample in classification by selecting the label that predominates 
among the target labels of the k-selected training samples, as illustrated in Figure 2. K-NN’s 
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simplicity and effectiveness make it a popular choice in various fields, including pattern 
recognition, image recognition, and recommendation systems.

Figure 2. How K-NN determines classes (a) calculating distance (b) new data is classified

A Decision Tree (DT) serves as a tree-based methodology for decision-making and 
predictive modelling. It recursively partitions the data into subsets based on the most 
influential attribute and its corresponding value. This process continues until a decision 
or leaf node that denotes a prediction is reached. Each division in the tree represents a 
decision, and the path from the root to a leaf node delineates a sequence of decisions 
leading to a prediction. DTs exhibit versatility in handling categorical and numerical data, 
making them applicable to classification and regression tasks. Employing a hierarchical 
tree structure, the DT algorithm characterises datasets and computes discrete target-valued 
functions, as illustrated in Figure 3. The classification is accomplished by organising tree 
instances from the root to a leaf node. Meanwhile, each node of the tree corresponds to 
an attribute, and each branch signifies the value of that attribute. DTs stand as a robust 
tool widely employed across diverse domains for their interpretability and effectiveness 
in decision-making processes.

The Support Vector Machine (SVM) is a powerful supervised learning technique 
applicable to classification and regression endeavours. Its fundamental aim revolves around 
identifying the hyperplane that effectively segregates the data into separate classes or 
predicts target values accurately. This hyperplane’s placement hinges on maximising the 
margin between it and the nearest data points, commonly known as support vectors. These 
support vectors, known as support vectors, serve as pivotal elements in delineating the 
hyperplane. These support vectors serve as pivotal elements in delineating the hyperplane 
and exert significant influence in making predictions for novel data points. The intricacies 
of SVM’s operation and reliance on support vectors are vividly portrayed in Figure 4, 
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Figure 3. Construction of Decision Trees

Figure 4. How a class is determined in Support Vector Machine (SVM)
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elucidating its practical implementation and theoretical underpinnings (Kim et al., 2023). 
Notably, SVM’s versatility extends beyond linear separation, encompassing non-linear 
relationships through techniques like kernel methods. 

It is a cornerstone in various domains, including image recognition, bioinformatics, 
and financial forecasting, underscoring its indispensable role in modern machine learning 
paradigms.

In contrast, Random Forest (RF) emerges as an ensemble learning framework 
meticulously crafted for classification and regression tasks. Unlike singular decision trees, 
RF constructs numerous Decision Trees (DTs), amalgamating their predictions to yield a 
comprehensive outcome. Each tree within the forest stands as a unique entity, fashioned 
from a random subset of the dataset and a random selection of features. This diversity 
among the trees fortifies the model’s resilience and predictive prowess, mitigating the 
risk of overfitting. The ultimate prediction is forged by amalgamating outcomes from all 
constituent trees in the random forest, elucidated in Figure 5 (Goel & Abhilasha, 2017; 
Ashtiani et al., 2021). RF’s versatility extends beyond linear separations, facilitating 
the discernment of complex, non-linear relationships present in data. Its efficacy and 
adaptability render it a cornerstone in modern machine learning, finding applications in 
domains ranging from finance to healthcare, underpinning its status as a quintessential 
tool in predictive analytics.

Figure 5. Concept of Random Forest
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METHODOLOGY

Image Acquisition

The mangosteen samples for this study were provided by the Malaysian Agriculture 
Research Development Institute (MARDI) in Changlun, Kedah, Malaysia. Postharvest, 
these specimens underwent photographic documentation at the Post Harvest Department, 
as seen in Figure 6a and Figure 6b. Image acquisition employed a Do-It-Yourself (DIY) 
mini-studio setup, outlined in Figure 6c, capturing the external surface of the mangosteen. 
A light source ensured optimal visibility. Despite a limited number of images, 20 regions of 
interest (ROIs) were extracted from each, standardised to 512 x 512 pixels. Table 1 outlines 
the distribution of images and ROIs across different maturity classes: Class 1 contributed 
25 images and 525 ROIs, Class 2 had 14 images and 294 ROIs, Class 3 contained 48 
images and 1008 ROIs, while Class 4 comprised 62 images and 1302 ROIs. Classes 5 and 
6 included 51 and 53 images, contributing 1071 and 1113 ROIs, respectively. From each 
image, textured and coloured features were extracted, resulting in 5313 ROIs or instances.

This study embraced a hybrid approach to feature extraction, drawing from 
methodologies proposed by Afandi et al. (2021) for textural features and leveraging 
coloured feature extraction techniques outlined in several studies (Khojatesnazhand et 
al., 2010; Leemans et al., 2002; Liming & Yanchao, 2010). Textural feature extraction 
commenced with converting each image into grayscale and then extracting 20 Regions 
of Interest (ROIs) from each rendition. Conversely, for coloured feature extraction, a 
comprehensive strategy unfolded, tapping into four distinct colour models: RGB, hue, 
saturation, value (HSV), CIE Lab, and CIE LUV. Each image transformed its designated 
colour model, with 20 ROIs extracted from each colour channel within every model. This 
dual-pronged approach facilitated an exhaustive examination of textured and coloured 
attributes, enriching subsequent analysis. By amalgamating these techniques, the study 
aimed to provide a nuanced understanding of the intricate interplay between texture and 
colour characteristics in the dataset under scrutiny.

under scrutiny. 

 
 

 
 

 
Figure 6. Activities of image acquisition 
 
Table 1 

(a)       (b)     (c) 
Figure 6. Activities of image acquisition

(a) (b) (c)
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Table 1  
Number of images and ROIs for each maturity class

Class Images ROI
1 25 525
2 14 294
3 48 1008
4 62 1302
5 51 1071
6 53 1113

Extracted Features from Mangosteen Images

Textured features were meticulously extracted using the Gray-Level Co-occurrence Matrix 
(GLCM) method pioneered by Haralick et al. (1973), encompassing 13 distinctive features. 
These included Energy, Contrast, Correlation, Variance, Homogeneity, Sum average, 
Sum variance, Sum entropy, Entropy, Difference Variance, Difference Entropy, Measure 
of Correlation 1, and Measure of Correlation 2. Each textured attribute was derived from 
four directional angles: 0, 45, 90, and 135 degrees, resulting in 52 textured features per 
Region of Interest (ROI). Conversely, coloured features encompassed mean, standard 
deviation, variance, entropy, and Root Mean Square (RMS) extracted from each ROI 
across every colour channel and colour model. Consequently, 60 coloured features were 
obtained, summing up to 112 features from textured and coloured domains for every ROI. 
This comprehensive feature extraction approach aimed to capture diverse characteristics 
embedded within the dataset, laying the groundwork for in-depth analysis and exploration 
of intricate patterns and correlations.

Experimentation Setup

The experimentation process encompassed three distinct feature modes: textured features 
only, coloured features only, and a fusion of both textured and coloured features. This 
comprehensive approach aimed to dissect the significance of each feature type within the 
designated classifiers, facilitating a better understanding of their respective contributions. 
Table 1 delineated a substantial dataset comprising 5313 Regions of Interest (ROIs) 
or instances amassed for this study. The experimental protocol comprised a bifurcated 
approach, with 70% of the instances allocated for training purposes, while the remaining 
30% constituted the test set. Instances were meticulously selected across various maturity 
classes to ensure a representative distribution within training and testing subsets. 
Consequently, 3,719 mangosteen ROI images spanning maturity class 1 through maturity 
class 6 were earmarked for training, supplemented by an additional 1,594 mangosteen 
ROI images earmarked for testing. Figures 7a to 7f showcase sample ROIs representing 
mangosteen maturity classes 1 through 6 in grayscale. Figures 7g to 7l present analogous 
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Figure 7. Samples of ROIs for each maturity class 1-6 respectively (a-f) in grayscale and (g-l) in RGB colour 
model 

Figure 7. Samples of ROIs for each maturity class 1-6 respectively (a-f) in grayscale and (g-l) in RGB 
colour model
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maturity stages in the RGB colour model, offering insights into the visual characteristics 
across different maturity levels.

The comprehensive processes delineated in Figure 8 encompass various stages, 
commencing with image acquisition, which involves the meticulous capture and subsequent 
conversion of images into grayscale and coloured formats. Following this, images undergo 
precise cropping to predefined dimensions, yielding Regions of Interest (ROIs) as an 
integral part of the image pre-processing pipeline, paving the way for subsequent analyses. 
Feature extraction ensues, wherein a rich array of both textured and coloured features is 
meticulously acquired and catalogued, subsequently categorised into three distinct datasets. performance metrics. 

 
 
Figure 8. The flow of processes in the experiment Figure 8. The flow of processes in the experiment

Modes: texture-only, colour-only, and a hybrid amalgamation of textured and coloured 
features. Each dataset undergoes rigorous training utilising four distinct classifiers: 
K-Nearest Neighbours (K-NN), Support Vector Machine (SVM), Decision Tree (DT), 
and Random Forest (RF). Remarkably, each classifier is adeptly leveraged across all three 
dataset modes, signifying the versatility and adaptability of the approach. This meticulous 
selection of classifiers is underpinned by their demonstrated efficacy in addressing 
multiclass problems, as underscored by previous research endeavours (Giuntini et al., 
2023; Boateng et al., 2020), highlighting their suitability for the present study’s objectives.

In this study, the specified classifiers accessible within the Matlab tool were employed 
for analysis. Furthermore, each type of the remaining dataset underwent thorough testing 
utilising the K-Nearest Neighbours (K-NN), Support Vector Machine (SVM), Decision 
Tree (DT), and Random Forest (RF) classifiers, respectively. Each machine learner 
performs the experimentation based on the parameter setting described in Table 2. The 
research findings are meticulously presented based on a comprehensive analysis of a testing 
dataset, employing diverse evaluation metrics to ensure a robust assessment. These chosen 
evaluation metrics encompass a broad spectrum, including accuracy, precision, recall, F1-
score, Cohen’s Kappa, and false negative rate (FNR), allowing for a multifaceted classifier 
performance evaluation. Particularly in the context of FNR analysis, a detailed examination 
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was conducted by constructing confusion matrices for each feature mode. Within these 
matrices, the counts of false negatives and true positives were meticulously tallied for each 
maturity class across all the aforementioned classifiers, providing invaluable insights into 
the classification outcomes and performance metrics.

Table 2  
Parameter setting for experimented machine learners

 N_estimators 100 Decision Tree Criterion Gini
Random Forest Criterion Gini  Splitter Best

Random state None  
 Kernel RBF  Number of 

neighbours
Default=5

SVM Probability False kNN Weight Uniform
Random state None  Leaf size Default=30

 Stratify Yes  Metric Default = 
‘Minkowski’

Evaluation Metrics

In addition to accuracy, as defined in Equation 1, this study incorporated diverse evaluation 
metrics. Following the recommendations of Powers (2020), precision, recall, F1-score, 
and Cohen’s Kappa were chosen as suitable metrics for assessing classifier performance 
in multiclass scenarios. Equation 1 quantifies accuracy, representing the ratio of true 
cases to overall cases. Precision, detailed in Equation 2, measures the quality of results by 
evaluating true positives against the sum of true positives and false positives. Equation 3 
defines recall as the ratio of true positives to the sum of true positives and false negatives, 
with precision gauging quality and recall gauging quantity. A higher precision indicates a 
model returning more relevant results than irrelevant ones, while a higher recall signifies 
a model retrieving the most relevant results irrespective of irrelevant ones. The F1-score, 
depicted in Equation 4, serves as the harmonic mean of precision and recall, providing a 
balanced evaluation of both metrics.
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The F1 score also represents the model’s accuracy on a dataset. F1-score ranges between 
0 and 1. The closer it is to 1, the better the model. Cohen’s Kappa measures the level of 
agreement between two raters who each classify items into mutually exclusive categories. 
In other words, the measure tests interrater reliability. The rater reliability represents the 
extent to which the data collected in the study are correct representations of the variables 
measured. Cohen’s Kappa, namely k, is described in Equation 5. Cohen’s Kappa always 
ranges between zero and one, with zero indicating no agreement between the two raters 
and one indicating perfect agreement between the two raters.indicating perfect agreement between the two raters. 

𝑘𝑘 =  
𝑇𝑇𝑃𝑃 −  𝑇𝑇𝑃𝑃
1 −  𝑇𝑇𝑃𝑃

                     (5) 

 

 [5]

where Po: relative observed agreement among raters 
Pe: hypothetical probability of chance agreement

The False Negative Rate (FNR) denotes instances where a true condition is inaccurately 
identified as false. For example, it quantifies how often instances are wrongly predicted as 
non-class 1 when they indeed belong to class 1 in the dataset. The FNR is calculated using 
Equation 6, whereby a smaller FNR is a better value given that false negative (FN) and 
true positive (TP) cases have been determined from the confusion matrix. A true positive 
signifies the model’s accurate prediction of a specific class.positive signifies the model's accurate prediction of a specific class. 

𝐹𝐹𝑇𝑇𝑅𝑅 =  
𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇
                 (6) 

 
According to Rainio et al. (2024), a suitable statistical  

 [6]

According to Rainio et al. (2024), a suitable statistical test for multiclass classification 
that determines significant differences among several models is the Friedman Test. Given 
that X2 is chi-square, N is a number of instances, df is the degree of freedom, and the 
p-value is the area under the density curve of the chi-square distribution to the right of the 
value of the test statistic. If the p-value is less than the significance level, there is enough 
evidence to conclude that at least one mean of the chosen metric is different among the 
multiple methods. This work chooses 0.05 as the significance level because it is common 
in classification. The lowest mean ranks signify the best statistically significant method. 
It is calculated by taking the sum of the ranks and divided by N.

RESULTS 

Results Related to Accuracy
The study found that most learners achieved less than 50% accuracy, as evidenced by the 
results from the texture features testing data in Table 3. Random Forest (RF) and Decision 
Tree (DT) precisely detected class 1 maturity within the range of 0.58 to 0.61. Support 
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Vector Machine (SVM) excelled in class 4 detection, achieving a recall value of 0.87. RF 
and DT performed well in detecting stages other than class 2, with recalls ranging from 
0.58 to 0.22, which is understandable due to SVM’s binary class inclination. Considering 
accuracy and Cohen’s Kappa, RF outperformed other classifiers. 

Moving forward, Table 3 offers a comprehensive overview of the results garnered from 
testing data, utilising an array of metrics derived from colour features. Random Forest (RF) 
exhibited exceptional performance, boasting an accuracy of 0.75 and a Cohen’s Kappa 
value of 0.69. RF showcased its superior ability in pinpointing both class 1 and class 6, 
achieving recall values that surpassed 0.90. Intriguingly, nearly all classifiers demonstrated 
proficiency in determining class 6 using colour features, highlighting the significance of 
colours within this category. Furthermore, RF displayed precision in identifying each class, 
with values ranging from 0.64 to 0.93. However, it is noteworthy that Decision Tree (DT) 
outperformed RF in detecting class 1, achieving a precision value of 0.84 compared to 
RF’s 0.78. Nevertheless, the overall performance of RF remains justified, given its voting 
approach to determine specified classes.

Table 3 provides a detailed overview of the results from analysing testing data, utilising 
a blend of texture and colour features. The findings prominently showcase the Random 
Forest (RF) model’s superiority, boasting an impressive accuracy of 0.76 and a Cohen’s 
Kappa value of 0.70. RF’s outperformance across F1 scores for each class is noteworthy, 
indicating its effectiveness in distinguishing various mangosteen maturity classes through 
the harmonic mean of combined precision and recall. Conversely, the Support Vector 
Machine (SVM) falls short, with a lower accuracy rate of 0.26 and a Cohen’s Kappa value 
of 0.04. SVM notably struggles in accurately identifying maturity class 2. 

Statistical Test Result Based on F1-score
Table 4 presents the Friedman Test result to discover the p-value and mean rank for 3 
categories of features across 6 classes of maturity stages based on F1-score metrics. 
Instead of accuracy, the F1-score was chosen to perform the statistical test because it 
represents a balanced evaluation of precision and recall. The p-value for texture features 
is 0.00235, which is less than 0.05 level of significance. Thus, there is enough evidence to 
conclude that at least one mean F1-score is different among the multiple classifiers under 
the texture features category. The mean rank for texture features using classifiers RF, DT, 
SVM, and kNN are 3.75, 3.16, 1.25, and 1.83, respectively. On the other hand, the p-value 
for colour features is 0.00235, which is less than 0.05 level of significance. Thus, there 
is enough evidence to conclude that at least one mean F1-score is different among the 
multiple classifiers under the colour features category. The mean rank for colour features 
using classifiers RF, DT, SVM, and kNN are 4.00, 2.75, 1.91, and 1.33, respectively. The 
p-value for a combination of texture and colour features is 0.00071, which is less than 0.05 
level of significance. Thus, there is enough evidence to conclude that at least one mean 
F1-score is different among the multiple classifiers under the combined features category. 
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The mean rank for combined features using classifiers RF, DT, SVM, and kNN are 4.00, 
3.00, 1.16, and 1.83, respectively.

Table 4  
Friedman Test result based on F1-score related to texture, colour and combined features 

 Classifier Sum of 
Ranks

X2 df N p-value Mean 
Rank

Texture

RF 22.50     3.75
DT 19.00 3.16

SVM 7.50 14.45 3 6 0.00235 1.25
kNN 11.00     1.83

Colour

RF 24.00     4.00
DT 16.50 2.75

SVM 11.50 14.45 3 6 0.00235 1.91
kNN 8.00 1.33

Combined 
colour and 
texture

RF 24.00     4.00
DT 18.00 3.00

SVM 7.00 17.00 3 6 0.00071 1.16
kNN 11.00     1.83

Results Related to Confusion Matrix and FNR
Figure 9 presents the confusion matrix depicting the results of testing textured features 
using various classifiers. Figure 10 illustrates qualitative measures, specifically the FNR 
derived from the confusion matrix in Figure 9. Random Forest (RF) exhibits the lowest false 
negative rate among the six maturity classes. Support Vector Machine (SVM) shows proficiency 
in determining maturity stages for classes 3, 4, and 5, with false negative rates ranging between 
0.6 and 0.8. However, SVM performs badly in other classes. 

The overall misclassification rate for the textured features scheme generated by RF, DT, 
SVM and kNN was 53.8%, 59.6%, 74.2% and 72.5%, respectively. The overall accuracy 
for the coloured features scheme using RF, DT, SVM and kNN were 75%, 69.4%, 65.6% 
and 63.6%, respectively. The overall accuracy for the combined texture-colour features 
scheme using RF, DT, SVM and kNN were 76%, 66.9%, 26.5% and 35.5%. The gap based 
on FNR between RF-DT and SVM-kNN scheme based on textured features in Figure 10 
was huge because of the higher misclassification rate between them. 

Figure 11 presents the confusion matrix depicting the results of testing-coloured 
features using various classifiers. Figure 12 provides a visual representation of the FNR 
derived from the confusion matrix in Figure 11. Random Forest (RF) emerges as the 
standout performer within this visualisation, boasting the lowest FNR across all classes, 
with rates between 0.1 and 0.4. The Support Vector Machine (SVM) encountered difficulties 
accurately detecting the class 2 maturity stage. Undoubtedly, RF distinguishes itself as the 
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most promising learner for discerning the various maturity classes of mangosteen within 
the dataset under scrutiny. This assertion finds support in its impressive accuracy, Cohen’s 
Kappa scores, and its consistently low false negative rates. Although SVM and kNN missed 
the 0.60 acceptance value based on Cohen’s Kappa, all the classifiers in the study achieved 
more than 0.60 accuracies. These findings suggested that colour features better describe 
mangosteen multiclass maturity. Gaps based on FNR between RF, DT, SVM and kNN 
based on coloured features in Figure 12 were reduced compared to the one in Figure 10, 
which employed textured features because of the lower misclassification rate among them.

Figure 13 presents the confusion matrix depicting the results of testing combined 
features using various classifiers. Figure 14 illustrates qualitative measures, specifically 
the FNR derived from the confusion matrix in Figure 13. Notably, the Random Forest 
(RF) exhibits the lowest FNR across classes, ranging from 0.05 to 0.32. This exceptional 
performance by RF, characterised by consistently low FNR values, complements the overall 
evaluation based on accuracy and Cohen’s Kappa. In contrast, the Support Vector Machine 
(SVM) faces challenges in determining class 1 and class 2 maturity, which is evident in its 
higher FNR. Intriguingly, despite SVM having the lowest FNR across classes compared 
to kNN, it surprisingly outperforms kNN in determining class 6. The gap based on FNR 
between RF-DT and SVM-kNN scheme based on combined texture-colour features in 
Figure 14 was huge because of the higher misclassification rate between them.

 
Figure 9. Confusion matrix with results analysed from the testing data of textured features executed via 
various classifiers 

 
Figure 9. Confusion matrix with results analysed from the testing data of textured features executed via 
various classifiers 

Figure 9. Confusion matrix with results analysed from the testing data of textured features executed via 
various classifiers
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Figure 10. False negative rates analysed from the testing data of textured features executed via various 
classifiers 

Figure 10. False negative rates analysed from the testing data of textured features executed via various 
classifiers

 
Figure 11. Confusion matrix with results analysed from the testing data of coloured features executed 
via various classifiers 

 
Figure 11. Confusion matrix with results analysed from the testing data of coloured features executed 
via various classifiers 

Figure 11. Confusion matrix with results analysed from the testing data of coloured features executed via 

various classifiers



Machine Learning Precision for Mangosteen Maturity

301Pertanika J. Sci. & Technol. 33 (1): 283 - 312 (2025)

Figure 12. False negative rates from the testing data of coloured features executed via various classifiers

 
Figure 13. Confusion matrix with results analysed from the testing data of combined textured and coloured features executed via various classifiers

 
Figure 13. Confusion matrix with results analysed from the testing data of combined textured and coloured features executed via various classifiers

Figure 13. Confusion matrix with results analysed from the testing data of combined textured and coloured 
features executed via various classifiers
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Figure 14. False negative rate from the testing data of combined textured and coloured features executed via 
various classifiers

Statistical Test Result Based on FNR

Table 5 presents the Friedman Test result to discover the p-value and mean rank for 3 
categories of features across 6 classes of maturity stages based on FNR metrics. The 
p-value for texture features is 0.00134, which is less than 0.05 level of significance. Thus, 
there is enough evidence to conclude that at least one mean FNR is different among the 
multiple classifiers under the texture features category. The mean rank for texture features 
using classifiers RF, DT, SVM, and kNN are 1.16, 1.83, 3.75, and 3.25, respectively. On 

Table 5  
Friedman Test result based on FNR related to texture, colour and combined features 

 Classifier Sum of Ranks X2 df N p-value Mean Rank

Texture

RF 7.00     1.16
DT 11.00 1.83

SVM 22.50 15.65 3 6 0.00134 3.75
kNN 19.50     3.25

Colour

RF 7.00     1.16
DT 12.50 2.08

SVM 20.50 12.55 3 6 0.00572 3.42
kNN 20.00 3.33

Combined 
colour and 
texture

RF 6.00     1.00
DT 12.00 2.00

SVM 23.00 17.00 3 6 0.00071 3.83
kNN 19.00     3.17



Machine Learning Precision for Mangosteen Maturity

303Pertanika J. Sci. & Technol. 33 (1): 283 - 312 (2025)

the other hand, the p-value for colour features is 0.00572, which is less than 0.05 level 
of significance. Thus, there is enough evidence to conclude that at least one mean FNR 
is different among the multiple classifiers under the colour features category. The mean 
rank for colour features using classifiers RF, DT, SVM, and kNN are 1.16, 2.08, 3.42, and 
3.33, respectively. The p-value for a combination of texture and colour features is 0.00071, 
which is less than 0.05 level of significance. Thus, there is enough evidence to conclude 
that at least one mean FNR is different among the multiple classifiers under the combined 
features category. The mean rank for combined features using classifiers RF, DT, SVM, 
and kNN are 1.00, 2.00, 3.83, and 3.7, respectively.

DISCUSSION

Discussion Related to Accuracy

The analysis of various metrics indicates a notable similarity in the accuracy of Random 
Forest (RF) and Decision Trees (DT) when utilising coloured features alone and in 
combination with textured features. The experimental findings strongly suggest that the 
use of colour features alone is sufficiently robust for characterising mangosteen maturity 
classes. Specifically, incorporating thirteen out of fourteen textural features from GLCM 
and five essential colour features—mean, standard deviation, variance, entropy, and RMS—
from each colour channel and model (RGB, HSV, CIE Lab, and CIE LUV) significantly 
contributes to accurate maturity class determination for mangosteen. RF is a superior 
classifier to DT, SVM and kNN due to its less biased nature—RF’s performance benefits 
from majority voting across multiple sub-tree iterations. 

The results based on the F1-score among all the compared machine learners are 
statistically significant for each type of feature scheme, as the p-value for all feature 
schemes is less than the 0.05 significance level. However, RF is not the most statistically 
significant method based on the mean rank values in Table 6. This finding is consistent 
with the methods compared to other works that employed deep learning (DL), as shown 
in Table 6. For instance, Sudana et al.’s (2020) work determined mangosteen maturity for 
seven classes using coloured features and achieved 97.10% accuracy. Another study by 
Mohtar et al. (2019) achieved 91.90% accuracy using Inception V3 to determine six classes 
of mangosteen maturity via coloured features. Although the work by Parashar and Johri 
(2024) is not directly comparable because it determined four classes of apple leaf disease, 
the Inception V3 model achieved an accuracy of 94.76%.

Traditional machine learning methods for determining maturity, skin defect, or ripeness 
have not performed as well as most deep learning results. Referring to Table 6, for example, 
Phothisonothai and Tantisatirapong (2019) conducted a study to determine mangosteen 
ripeness for three classes using texture and coloured features via GMM, achieving 86.67% 
accuracy. Riyadi et al. (2020) studied mangosteen binary classes of skin defects using 
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texture and coloured features, scoring 94.16% accuracy via LDA. Whidhiasih et al. (2012) 
achieved 85% accuracy in determining three classes of mangosteen maturity using textured 
and coloured features classified via Fuzzy NN.

As observed in Table 6, many studies did not report precision and recall, leaving insufficient 
information to conclude the FNR performance. Orchi et al.’s (2023) work compared DL and 
traditional learners, including Inception V3, RF, SVM, and K-NN, but did not determine FNR 
and focused on binary classes of crop leaf disease. In his work, RF achieved a competitive 
accuracy of 97.54% compared to Inception V3 accuracy of 98.01%.

Regardless of RF’s ability to classify multiclass instances, the instances acquired from 
textured features did not really represent the overall characterisation of the mangosteen 
maturity stages. Besides texture, mangosteen maturity is also characterised by their skin 
colour. DT performed worse than RF but was much better than SVM and K-NN, using 
textured features only. It is supported by the fact that DT suffers a bias problem. However, 
because the classifier is suitable for multiclass problems, the DT recognition rate is much 
better than that of SVM and K-NN. It is observed that having textured features only is 
insufficient to characterise the mangosteen maturity classes.  

It was mentioned earlier that the overall accuracy for the textured features scheme 
using RF was 46.2%. Meanwhile, when coloured features were employed, the recognition 
rate increased to 75% using the same classifier. This result indicates that coloured features 
are significantly better at characterising mangosteen maturity stages compared to textured 
features. A similar trend was observed with the remaining classifiers. The overall accuracy 
for the coloured features scheme using both SVM and K-NN ranged between 63% and 
66% for the six mangosteen maturity classes. From earlier findings, RF and DT achieved 
an overall accuracy of 69% and 75% for the coloured features scheme. It suggests that 
coloured features are essential for characterising mangosteen maturity classes regardless 
of the classifier used, though some classifiers perform better or worse depending on their 
processing capabilities.

The combined coloured texture feature was 76% using the same type of classifier. 
Coloured features or a combination of colour texture features are suggested to characterise 
mangosteen maturity classes.

Surprisingly, the overall accuracy of the coloured features and combined texture-
colour features scheme using the same DT classifier was 69.4% and 66.9%, respectively. 
Indeed, the use of coloured features and combined texture-colour features are adequate to 
characterise mangosteen maturity stages.

The overall accuracy for the colour features scheme and combination of texture-colour 
using SVM was 65.6% and 26%, respectively. Meanwhile, the overall accuracy for the 
colour features scheme and combination of texture-colour using K-NN was 63.6% and 
35.5%, respectively. There is a huge decrease in the overall accuracy when combined 
texture-colour features are used and executed using SVM and K-NN. These findings may 
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be because those classifiers have less ability to handle high dimensional data, thus less 
processing power. 

Based on the experimentation result, this work suggests that using colour features is 
sufficient to characterise mangosteen maturity classes. Alternatively, combined texture-
colour features are better executed using an RF classifier to determine mangosteen maturity 
classes. Indeed, five coloured features, namely mean, standard deviation, variance, entropy, 
and RMS from each colour channel and each colour model of RGB, HSV, CIE Lab, and 
CIE LUV, are essential to determine maturity classes for mangosteen. RF classifier can 
handle multiclass problems, which is a valuable notion in this kind of work. In addition, 
RF lessens the overfitting problem in DT and reduces the variance, improving accuracy. 
On top of that, non-linear parameters are handled efficiently, and RF is robust to outliers.

Discussion Related to FNR

The False Negative Rates (FNR) for RF, whether using coloured features alone or combined 
texture and coloured features, exhibit consistent similarity, ranging from 0.02 to 0.40. 
It suggests that determining mangosteen multiclass maturity stages can be effectively 
achieved using either coloured features or a combination of texture and colour features. 
From another perspective, combined features are not the factor degrading SVM and K-NN 
multiclass detection capability. The competitive accuracy values support it, as Cohen’s 
Kappa and FNR were obtained from RF and DT. RF achieved an accuracy of 0.76 and 
DT of 0.67. Both RF and DT Cohen’s Kappa readings are above 0.59, with RF having a 
higher reading of 0.70. The FNR for RF is more than 0.60 but is considered competitive 
when it falls between 0.02 and 0.40.

Due to their inherent limitations, SVM and K-NN are less effective in determining 
multiclass mangosteen maturity. SVM is more suited for binary classification, while K-NN, 
although supporting multiclass cases, struggles to differentiate them effectively using the 
proximity concept. K-NN does not require training before classification, whereas accurately 
differentiating among mangosteen maturity classes necessitates a learning process.

This observation aligns with the results presented in Table 3, where RF’s performance is 
rooted in the majority voting concept. SVM is known to better suit binary classification. In this 
work, kNN, as a lazy learning algorithm, falls short in finding the similarity of new and 
existing points in specified classes.

Once again, RF’s commendable performance can be attributed to its robust computing 
capability, which employs a voting mechanism among subtrees during iteration. This unique 
approach mitigates bias and proves highly effective in accurately classifying multiclass 
cases.

This anomaly can be attributed to SVM’s nature as a binary classifier. It distinguishes 
between class 2 and non-class 2 categories, potentially contributing to its superior 
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performance in certain instances. This nuanced understanding of classifier behaviour 
enhances our insights into their strengths and limitations in differentiating various maturity 
classes.

Regardless of the FNR rate, RF and DT classify better in all feature schemes. SVM 
and K-NN have less processing power to classify when only textured and a combination 
of texture-colour features are used. Regardless of the feature scheme, RF is always the 
best classifier compared to DT. Additionally, RF is the best at classifying maturity stages 
among all the classifiers.

Results based on FNR among all the compared machine learners in Table 5 are 
statistically significant for each type of feature scheme because the p-value for all feature 
schemes is less than the 0.05 significance level. RF is also the most statistically significant 
method, scoring the lowest mean rank values in Table 5.

The competitive performance of FNR using the RF classifier across multiple classes 
highlights its adeptness in handling multiclass problems, a crucial attribute in this context. 
Furthermore, RF effectively mitigates the overfitting issues associated with DT, reduces 
variance, and thereby enhances overall accuracy. Its proficiency in managing non-linear 
parameters and resilience to outliers make RF a robust choice for this analytical task.

When comparing the experimented methods with previous work on statistically 
significant methods based on FNR, there is insufficient information to conclude because 
many previous works did not compute precision and recall metrics.

CONCLUSION

RF is deemed the best method based on its accuracy in determining six mangosteen maturity 
classes compared to the experimented methods. A statistical test, the Friedman Test, was 
conducted using the F1-score, and it was found that at least one method is statistically 
significant and differs among the multiple methods, with a significance level of 0.05. 
Nevertheless, SVM is the best statistically significant method via texture and combined 
texture-colour features based on Table 4. 

Compared to the work by Orchi et al. (2023) in Table 6, RF is competitive against 
Inception V3 based on F1-score reading even though Orchi et al.’s (2023) work experiments 
with binary class crop leaf disease. Given a huge dataset, RF has the potential to beat DL 
classifiers, and the number of instances in each class is more proportionate. In the future, 
this study recommends improving RF by incorporating an enhanced dynamic weighted 
function to regularise the voting mechanism to classify.

Either colour features or a combination of texture and colour features are suitable for 
determining mangosteen maturity stages. This finding is also applicable to previous works, 
as shown in Table 6 (Al-Mashhadani et al., 2021; Kim et al., 2023; Muñoz et al., 2021; 
Parashar & Johri, 2024). 
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RF also generated the lowest FNR across texture and colour and combined texture-
colour feature schemes for almost all six classes, as presented in Figures 10, 12 and 14. The 
FNR were computed based on FN and TP reading in the confusion matrix for each feature 
scheme. RF achieved the best statistically significant method among the experimented 
methods based on the lowest mean rank value analysed using the Friedman Test with a 
0.05 significance level. Apparently, RF is the best method to handle FNR-related analysis 
in mangosteen six multiclasses’s maturity stages study. Nevertheless, there is not enough 
information to claim that other classifiers from agricultural-related studies are able to handle 
FNR because many studies have not analysed the related metric. In future work to improve 
weighted function in an enhanced RF algorithm, it is recommended that FNR analysis be 
incorporated with other machine learners to justify its computational capability. This work 
is limiting the work among traditional machine learners. Thus, the next work will extend 
the experimentation using DL instead of comparing it with traditional machine learners. 
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